Section 3.9 Logarithmic Differentiation

(1) Review of Logarithm Properties and Derivatives
(2) Logarithmic Differentiation

Review, Logarithmic Functions

Definition of Logarithms

$$
y=\log _{b}(x) \quad \Leftrightarrow \quad b^{y}=x
$$

Basic Properties

(I) $b^{\log _{b}(x)}=x$ and $\log _{b}\left(b^{x}\right)=x$.
(II) $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$.
(III) $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$.
(IV) $\log _{b}\left(x^{y}\right)=y \log _{b}(x)$.

Derivatives

$$
\frac{d}{d x}\left(\log _{b}(x)\right)=\frac{1}{x \ln (b)} \quad \frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

Examples, Logarithms

(a) $\log _{4}(16)=\log _{4}\left(4^{2}\right)=2$
(b) $\log _{4}\left(\frac{1}{16}\right)=\log _{4}\left(4^{-2}\right)=-2$
(c) $\log _{1 / 4}\left(\frac{1}{16}\right)=\log _{1 / 4}\left((1 / 4)^{2}\right)=2$
(d) $\log _{2}(\sqrt[3]{2})=1 / 3$
(e) $\log _{2}\left(\frac{1}{4 \sqrt{2}}\right)=\log _{2}\left(2^{-5 / 2}\right)=-5 / 2$
(f) $\ln \left(\frac{x^{2}(x-1)}{\sqrt{x+1}}\right)=2 \ln (x)+\ln (x-1)-\frac{1}{2} \ln (x+1)$

The domain of $\log _{b}(x)$ is the range of $y=b^{x}$, namely $(0, \infty)$.

So the identity $\frac{d}{d x}(\ln (x))=\frac{1}{x}$ is valid only if $x>0$.

Question: How can we extend the logarithm function to something whose derivative is $\frac{1}{x}$ for all nonzero x ?

Answer: Define $f(x)=\ln |x|= \begin{cases}\ln (x) & \text { if } x>0, \\ \ln (-x) & \text { if } x<0 .\end{cases}$

Then $\frac{d}{d x}(\ln |x|)=\left\{\begin{array}{ll}\frac{1}{x} & \text { if } x>0, \\ \frac{-1}{-x} & \text { if } x<0 .\end{array} \quad \frac{d}{d x}(\ln |x|)=\frac{1}{x}\right.$ for all $x \neq 0$.

Logarithmic Differentiation

Example 1: Let $y=f(x)=x^{x}$. Find the derivative $f^{\prime}(x)$.
@ The rules $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ and $\frac{d}{d x}\left(b^{x}\right)=b^{x} \ln (b)$ do not apply!:

- $f(x)=x^{x}$ is not a power function (the exponent is not a number)
- $f(x)=x^{x}$ is not an exponential function (the base is not a number)

Use the technique of logarithmic differentiation.
(I) Take the natural logarithm of both sides of the equation $y=x^{x}$ and use the Laws of Logarithms to simplify the expression.
(II) Differentiate the expression implicitly with respect to x.
(III) Solve for $d y / d x$.

Logarithmic Differentiation

Solution:

(I)

$$
\begin{aligned}
y & =x^{x} \\
\ln (y) & =\ln \left(x^{x}\right)=x \ln (x)
\end{aligned}
$$

$$
\frac{y^{\prime}}{y}=x \cdot \frac{1}{x}+1 \cdot \ln (x)=1+\ln (x)
$$

$$
\begin{equation*}
y^{\prime}=y(1+\ln (x))=x^{x}(1+\ln (x)) \tag{III}
\end{equation*}
$$

Logarithmic Differentiation

(I) Take the natural logarithm of both sides of an equation $y=f(x)$ and use the Laws of Logarithms to simplify the expression.
(II) Differentiate the expression implicitly with respect to x.
(III) Solve for $d y / d x$, replacing y with $f(x)$.

Logarithmic Differentiation

Logarithmic Differentiation

(I) Take the natural logarithm of both sides of an equation $y=f(x)$ and use the Laws of Logarithms to simplify the expression.
(II) Differentiate the expression implicitly with respect to x.
(III) Solve for $d y / d x$, replacing y with $f(x)$.

In general there are four cases for exponents and bases:
(1) $\frac{d}{d x}\left(a^{b}\right)=0$
(2) $\frac{d}{d x}\left([f(x)]^{b}\right)=b[f(x)]^{b-1} f^{\prime}(x)$
(3) $\frac{d}{d x}\left(a^{g(x)}\right)=a^{g(x)} \ln (a) g^{\prime}(x)$
(4) $\frac{d}{d x}\left([f(x)]^{g(x)}\right)=\left(g^{\prime}(x) \ln (f(x))+\frac{g(x) f^{\prime}(x)}{f(x)}\right)[f(x)]^{g(x)}$

Example 2, Logarithmic Differentiation

(I) Find the derivative of $y=(2 x+1)^{5}\left(x^{3}-1\right)^{3}$.

$$
\ln (y)=\ln \left((2 x+1)^{5}\left(x^{3}-1\right)^{3}\right)=5 \ln (2 x+1)+3 \ln \left(x^{3}-1\right)
$$

$$
\text { Differentiating: } \frac{1}{y} \frac{d y}{d x}=5 \frac{2}{2 x+1}+3 \frac{3 x^{2}}{x^{3}-1}
$$

$$
\frac{d y}{d x}=(2 x+1)^{5}\left(x^{3}-1\right)^{3}\left(\frac{10}{2 x+1}+\frac{9 x^{2}}{x^{3}-1}\right)
$$

(II) Find the derivative of $y=\left(\frac{x^{2}(x-1)}{\sqrt{x+1}}\right)^{\pi}$.

$$
\begin{aligned}
& \ln (y)=\pi\left(2 \ln (x)+\ln (x-1)-\frac{1}{2} \ln (x+1)\right) \\
& \frac{d y}{d x}=\pi\left(\frac{2}{x}+\frac{1}{x-1}-\frac{1}{2(x+1)}\right)\left(\frac{x^{2}(x-1)}{\sqrt{x+1}}\right)^{\pi}
\end{aligned}
$$

Logarithmic Differentiation: Example 2:

(III) $y=x^{\sin (x)}$:

$$
\begin{gathered}
\ln (y)=\ln \left(x^{\sin (x)}\right)=\sin (x) \ln (x) \\
\frac{y^{\prime}}{y}=\cos (x) \ln (x)+\frac{\sin (x)}{x} \\
y^{\prime}=x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin (x)}{x}\right)
\end{gathered}
$$

(IV) $y=\sin (x)^{\arctan (x)}: \quad \ln (y)=\arctan (x) \ln (\sin (x))$

$$
\begin{gathered}
\frac{y^{\prime}}{y}=\frac{\ln (\sin (x))}{1+x^{2}}+\frac{\cos (x)}{\sin (x)} \arctan (x) \\
y^{\prime}=\sin (x)^{\arctan (x)}\left(\frac{\ln (\sin (x))}{1+x^{2}}+\cot (x) \arctan (x)\right)
\end{gathered}
$$

Example 3

(I) Let $f(x)=\log _{a}\left(3 x^{2}-2\right)$. For what value of a is $f^{\prime}(1)=3$?

$$
f^{\prime}(x)=\frac{6 x}{\ln (a)\left(3 x^{2}-2\right)} \quad f^{\prime}(1)=\frac{6}{\ln (a)}
$$

- If $f^{\prime}(1)=3$ then $\ln (a)=2$, so $a=e^{2}$.
(II) On what interval(s) is the function $f(x)=\frac{\ln (x)}{x}$ increasing, decreasing, concave upward and concave downward?

$$
\frac{d y}{d x}=\frac{1-\ln (x)}{x^{2}} \quad \frac{d^{2} y}{d x^{2}}=\frac{-3+2 \ln (x)}{x^{3}}
$$

- Increasing on $(0, e)$, decreasing on (e, ∞).
- Concave up on $\left(e^{1.5}, \infty\right)$, concave down on $\left(0, e^{1.5}\right)$.

Example 4, Logarithmic Implicit Differentiation!

Consider the curve defined by the equation $y \sqrt{x^{2}+3}=x^{y}$.
Find the equation of the tangent line at the point $\left(1, \frac{1}{2}\right)$.

$$
\begin{array}{rlrl}
\ln \left(y\left(x^{2}+3\right)^{1 / 2}\right) & =\ln \left(x^{y}\right) & \ln (y)+\frac{1}{2} \ln \left(x^{2}+3\right)=y \ln (x) \\
\frac{y^{\prime}}{y}+\frac{2 x}{2\left(x^{2}+3\right)}=\frac{y}{x}+y^{\prime} \ln (x) & \frac{y^{\prime}}{y}-y^{\prime} \ln (x)=\frac{y}{x}-\frac{x}{x^{2}+3}
\end{array}
$$

$$
y^{\prime}=\left.\frac{\frac{y}{x}-\frac{x}{x^{2}+3}}{\frac{1}{y}-\ln (x)} \quad y^{\prime}\right|_{(x, y)=\left(1, \frac{1}{2}\right)}=\frac{\frac{1}{2}-\frac{1}{4}}{2-0}=\frac{1}{8}
$$

Answer: $y-\frac{1}{2}=\frac{1}{8}(x-1)$ or $y=\frac{1}{8} x+\frac{3}{8}$.

