Section 3.9

Logarithmic Differentiation

- (1) Review of Logarithm Properties and Derivatives
- (2) Logarithmic Differentiation

Review, Logarithmic Functions

Definition of Logarithms

$$y = \log_b(x)$$
 \Leftrightarrow $b^y = x$

$$\Leftrightarrow$$

$$b^y = x$$

Basic Properties

- (I) $b^{\log_b(x)} = x$ and $\log_b(b^x) = x$.
- (II) $\log_b(xy) = \log_b(x) + \log_b(y)$.
- (III) $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$.
- (IV) $\log_h(x^y) = y \log_h(x)$.

Derivatives

$$\frac{d}{dx}(\log_b(x)) = \frac{1}{x \ln(b)}$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

Examples, Logarithms

(a)
$$\log_4(16) = \log_4(4^2) = 2$$

(b)
$$\log_4\left(\frac{1}{16}\right) = \log_4(4^{-2}) = -2$$

(c)
$$\log_{1/4} \left(\frac{1}{16} \right) = \log_{1/4} \left((1/4)^2 \right) = 2$$

(d)
$$\log_2(\sqrt[3]{2}) = 1/3$$

(e)
$$\log_2\left(\frac{1}{4\sqrt{2}}\right) = \log_2\left(2^{-5/2}\right) = -5/2$$

(f)
$$\ln\left(\frac{x^2(x-1)}{\sqrt{x+1}}\right) = 2\ln(x) + \ln(x-1) - \frac{1}{2}\ln(x+1)$$

The domain of $\log_b(x)$ is the range of $y = b^x$, namely $(0, \infty)$.

So the identity $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$ is valid only if x > 0.

Question: How can we extend the logarithm function to something whose derivative is $\frac{1}{x}$ for all nonzero x?

Answer: Define
$$f(x) = \ln|x| = \begin{cases} \ln(x) & \text{if } x > 0, \\ \ln(-x) & \text{if } x < 0. \end{cases}$$

Then
$$\frac{d}{dx}(\ln|x|) = \begin{cases} \frac{1}{x} & \text{if } x > 0, \\ \frac{-1}{-x} & \text{if } x < 0. \end{cases}$$
 $\frac{d}{dx}(\ln|x|) = \frac{1}{x} \text{ for all } x \neq 0.$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$
 for all $x \neq 0$.

Logarithmic Differentiation

Example 1: Let
$$y = f(x) = x^x$$
. Find the derivative $f'(x)$.

- \wedge The rules $\frac{d}{dx}(x^n) = nx^{n-1}$ and $\frac{d}{dx}(b^x) = b^x \ln(b)$ do not apply!:
 - $f(x) = x^x$ is not a power function (the exponent is not a number)
 - $f(x) = x^x$ is not an exponential function (the base is not a number)

Use the technique of logarithmic differentiation.

- (I) Take the natural logarithm of both sides of the equation $y = x^x$ and use the Laws of Logarithms to simplify the expression.
- (II) Differentiate the expression implicitly with respect to x.
- (III) Solve for dy/dx.

Logarithmic Differentiation

Solution:

(I)
$$y = x^{x}$$
$$\ln(y) = \ln(x^{x}) = x \ln(x)$$

(II)
$$\frac{y'}{y} = x \cdot \frac{1}{x} + 1 \cdot \ln(x) = 1 + \ln(x)$$

(III)
$$y' = y(1+\ln(x)) = x^{x}(1+\ln(x)).$$

Logarithmic Differentiation

- (I) Take the natural logarithm of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify the expression.
- (II) Differentiate the expression implicitly with respect to x.
- (III) Solve for dy/dx, replacing y with f(x).

Logarithmic Differentiation

Logarithmic Differentiation

- (I) Take the natural logarithm of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify the expression.
- (II) Differentiate the expression implicitly with respect to x.
- (III) Solve for dy/dx, replacing y with f(x).

In general there are four cases for exponents and bases:

$$(1) \frac{d}{dx} (a^b) = 0$$

(2)
$$\frac{d}{dx}([f(x)]^b) = b[f(x)]^{b-1}f'(x)$$

(3)
$$\frac{d}{dx} \left(a^{g(x)} \right) = a^{g(x)} \ln(a) g'(x)$$

(4)
$$\frac{d}{dx} \left([f(x)]^{g(x)} \right) = \left(g'(x) \ln(f(x)) + \frac{g(x)f'(x)}{f(x)} \right) [f(x)]^{g(x)}$$

Example 2, Logarithmic Differentiation

(I) Find the derivative of $y = (2x+1)^5(x^3-1)^3$.

$$\ln(y) = \ln\left((2x+1)^5(x^3-1)^3\right) = 5\ln(2x+1) + 3\ln(x^3-1)$$

Differentiating:
$$\frac{1}{y} \frac{dy}{dx} = 5 \frac{2}{2x+1} + 3 \frac{3x^2}{x^3 - 1}$$

$$\frac{dy}{dx} = (2x+1)^5 (x^3 - 1)^3 \left(\frac{10}{2x+1} + \frac{9x^2}{x^3 - 1} \right)$$

(II) Find the derivative of
$$y = \left(\frac{x^2(x-1)}{\sqrt{x+1}}\right)^n$$
.

$$\ln(y) = \pi \left(2\ln(x) + \ln(x-1) - \frac{1}{2}\ln(x+1) \right)$$

$$\frac{dy}{dx} = \pi \left(\frac{2}{x} + \frac{1}{x-1} - \frac{1}{2(x+1)} \right) \left(\frac{x^2(x-1)}{\sqrt{x+1}} \right)^{\pi}$$

Logarithmic Differentiation: Example 2:

(III)
$$y = x^{\sin(x)}$$
:
$$\ln(y) = \ln\left(x^{\sin(x)}\right) = \sin(x)\ln(x)$$
$$\frac{y'}{y} = \cos(x)\ln(x) + \frac{\sin(x)}{x}$$
$$y' = x^{\sin(x)}\left(\cos(x)\ln(x) + \frac{\sin(x)}{x}\right)$$
(IV) $y = \sin(x)^{\arctan(x)}$:
$$\ln(y) = \arctan(x)\ln(\sin(x))$$
$$\frac{y'}{y} = \frac{\ln(\sin(x))}{1+x^2} + \frac{\cos(x)}{\sin(x)}\arctan(x)$$
$$y' = \sin(x)^{\arctan(x)}\left(\frac{\ln(\sin(x))}{1+x^2} + \cot(x)\arctan(x)\right)$$

Example 3

(I) Let $f(x) = \log_a(3x^2 - 2)$. For what value of a is f'(1) = 3?

$$f'(x) = \frac{6x}{\ln(a)(3x^2 - 2)}$$
 $f'(1) = \frac{6}{\ln(a)}$

- If f'(1) = 3 then $\ln(a) = 2$, so $a = e^2$.
- (II) On what interval(s) is the function $f(x) = \frac{\ln(x)}{x}$ increasing, decreasing, concave upward and concave downward?

$$\frac{dy}{dx} = \frac{1 - \ln(x)}{x^2} \qquad \qquad \frac{d^2y}{dx^2} = \frac{-3 + 2\ln(x)}{x^3}$$

- Increasing on (0,e), decreasing on (e,∞) .
- Concave up on $(e^{1.5}, \infty)$, concave down on $(0, e^{1.5})$.

Example 4, Logarithmic Implicit Differentiation!

Consider the curve defined by the equation $y\sqrt{x^2+3}=x^y$. Find the equation of the tangent line at the point $(1,\frac{1}{2})$.

$$\ln\left(y(x^2+3)^{1/2}\right) = \ln\left(x^y\right) \qquad \ln(y) + \frac{1}{2}\ln(x^2+3) = y\ln(x)$$

$$\frac{y'}{y} + \frac{2x}{2(x^2+3)} = \frac{y}{x} + y'\ln(x) \qquad \frac{y'}{y} - y'\ln(x) = \frac{y}{x} - \frac{x}{x^2+3}$$

$$y' = \frac{\frac{y}{x} - \frac{x}{x^2+3}}{\frac{1}{y} - \ln(x)} \qquad y'\Big|_{(x,y)=(1,\frac{1}{2})} = \frac{\frac{1}{2} - \frac{1}{4}}{2 - 0} = \frac{1}{8}$$

Answer: $y - \frac{1}{2} = \frac{1}{8}(x - 1)$ or $y = \frac{1}{8}x + \frac{3}{8}$.

